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Abstract

This work constructs an algorithm to transcribe event-related potentials (ERPs)
recorded by EEG in response to a sequence of single-trial stimuli, to a sequence of
symbols. Each symbol represents a distinct category of ERP shapes. The resulting
sequence-of-symbols representation is a noise-reduced format for sequences of ERPs
and can be utilized by pattern mining algorithms to analyze sequential and contextual
structure in sequences of ERPs. This information would otherwise be lost when
averaging over multiple EEG trials, which is currently the most popular method for
reducing noise in ERPs. The algorithm is developed using available EEG recordings
from N-back experiments, a visual paradigm which produces a sequence of ERPs.

In order to cope with the remarkably high signal-to-noise ratio, spatio-temporal
beamforming is applied as a linear filter to extract noise-reduced features from
single-trial ERPs. This work extends the spatio-temporal beamformer to the spatio-
temporal multi-component beamformer to capture more information from each ERP.
Two multi-component beamforming approaches are developed. The first method is
based on time-window truncated activation patterns, while the second method refines
the component activation patterns to isolate specific ERP components. Subsequently,
features extracted by the multi-component-beamformer are categorized in groups,
which in turn can be represented by a transcribed symbol, using k-medoids clustering.
The methods are validated by testing the informativeness of extracted features in
several classification tasks and by inspecting the representative ERPs for each symbol,
obtained by averaging over all trials in the symbol’s cluster.

Results show that the multi-component beamformer has the potential to improve
state-of-the-art performance in target/non-target classification for ERP based Brain-
Computer Interface paradigms. Visual inspection of symbol representatives shows
apparent differences in ERP shape for each cluster, indicating that the algorithm can
capture different types of ERPs in different symbols. However, this method is still
hindered in its performance and applicability by the large inter-subject variability of
ERPS, as well as the inherently high noise levels present in single-trial ERPs.
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Chapter 1

Introduction

Brain-computer interfaces (BCIs) are devices that establish a communication channel
between the brain and a computer. The field of BCI research, computational neuro-
science, lies on the intersection of neuroscience, computer science and engineering.
Specifically, the computational neuroscientist utilizes signal processing, mathematical
modeling, and other algorithmic techniques to decode the brain’s hidden internal
state. Recently, BCIs have sparked interest in the machine learning community,
which have led to an influx of new techniques and results. Advances in computational
neuroscience research have had an essential influence on the fields of neuroscience
and clinical neurology, with applications such as detecting epileptic seizures or com-
munication devices for paralyzed patients who suffer from the so-called locked-in
syndrome.

While a plethora of devices exists to capture brain activity and translate it to
a signal which can be interpreted by a computer, the most widespread of these
measure the electromagnetic activity in the brain. The brain consists of neurons that
communicate with each other by passing an electrical current. When a large popula-
tion of neurons exhibits similar activations, changes in the external electromagnetic
field can be detected. These changes are tiny yet measurable, even on the scalp of
a subject. A cheap, non-invasive and proven method of capturing this activity is
the electroencephalogram (EEG), invented by Hans Berger in 1924. EEG works by
attaching electrodes to the scalp of a subject that measure changes in the electrical
potentials at different locations on the scalp. The output of an EEG device is a
multi-channel time-series consisting of the voltage measured by each electrode.

EEG analysis often focuses on time-locked features in this time-series. When the
subject observes external stimuli via its senses, the EEG signal will exhibit detectable
behavior in the time and frequency domain, within a specific time frame of the
stimulus. These signal deflections are called event-related potentials or ERPs and
consist of multiple components (deflections), each of which can vary based on the
stimulus (see Figure 1.3) or other factors, such as the subject’s attention. Analysis
of these EEG potentials can grant insight into the human brain’s inner workings and
the processes involved in perception and reasoning. While ERP based BCI paradigms
often use state-of-the-art ERP analysis techniques that aim to increase classification
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Figure 1.1: An example of an EEG de- Figure 1.2: A visualization of an EEG
vice. output.

performance, there are still opportunities for improvement. An especially compelling
case in which earlier research is currently lacking is the analysis of ERPs in the context
of their surrounding ERPs, i.e., sequential ERP analysis. Most current techniques
process the averages of ERP responses to multiple repetitions of a stimulus in order
to decrease the influence of independent noise on the EEG signal. This averaging
necessarily means that differences caused by the context in which the singular ERPs
occur are lost, or large sections of stimuli must be repeated, thus preserving the
context. The latter is rather impractical for BCI applications. A new technique is
required to take into account the differences in components caused by the influences
of earlier ERPs or stimuli.

This thesis proposes linguistic transcription as a new data format for a sequence

34 N1
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Figure 1.3: Ideal event-related potential in one channel with annotated components.
Components are named after the sign of the amplitude of the deflection (P for
positive and N for negative) and the time after the stimulus at which they occur (e.g.,
N2 or N200 for a negative component appearing around 200ms after the stimulus
onset. Conventionally, the potential axis is reversed.



of ERPs with reduced noise, thus avoiding ERP averaging and facilitating sequential
ERP analysis. In this format, a symbol represents each ERP. Each symbol describes
a different category of ERPs that are relatively similar. A symbolic transcription
has some clear advantages, which include the following: 1) A structured format for
researching sequential structures in the EEG. 2) Techniques in data mining, text
mining, pattern recognition, and bio-informatics often work with symbol sequences.
A sequence-of-symbols representation for ERPs could open an entirely new window
in BCI research to the application of techniques that have proven to be powerful
in the past. 3) In general, the sequence could provide a workable representation
format for the training of ERP classifiers and predictors. 4) The transcription is in
itself an automatic annotation of ERPs or EEG subsequences. Automatic annotation
has possible medical applications, such as assisting experts in EEG pattern analysis.
5) A sequential data format has the representation power necessary to capture brain
activity caused by context buildup. If a series of stimuli is presented to a subject, the
transcription can be utilized to analyze the influence of earlier ERPs and stimuli on
current ERPs, without the need for averaging over entire sequences. This principle
is especially powerful in text-based BCIs. When a subject receives textual stimuli,
e.g., in the form of words on a screen, each word will elicit an ERP. If a sequence of
these words carries a semantic meaning and forms a coherent sentence, this sequence
of ERPs will, according to some research indications, represent the brain’s activity
when processing sentences. Currently, however, there is no direct method to capture
these ERPs sequentially. The development of such a method is the main motivation
for this thesis and could have multiple applications in text and speech processing
BClIs.

This last application is of particular interest for neuroscientific research in under-
standing brain processes and the development of text-based BCIs that aim to predict
or analyze words based on their response in brain activity. Analyzing responses to
individual words does not provide reliable results, since a significant portion of the
semantic meaning of a word can be attributed to the context in which it appears.
When a sample word is not extremely concrete, its meaning only resolves once it
is placed in a sentence (i.e., a sequence of other words). Currently, BCIs can only
take into account one word, for instance, the end word of a sentence. The linguistic
transcription approach developed in this work could clear the road for ERP analysis
in sentences.

This work first defines the necessary EEG concepts and research goals, followed by
a specification of the dataset and the requirements and challenges for developing the
linguistic transcription algorithm. Next, an overview of related work and background
knowledge required for the development of the algorithm is provided. An exploratory
analysis studies whether a sequential structure is present in the data, which could
later be leveraged to verify the algorithm output. Finally, feature extraction and
validation methods are developed for the linguistic transcription algorithm and their
effectiveness verified by experiments in a supervised and unsupervised setting.






Chapter 2

Problem Statement

Problem statement Develop an automatic annotation of ERP responses elicited
when presenting rapid sequences of visual stimuli, leveraging recent developments in
spatio-temporal EEG filters to tackle the low signal-to-noise ratio.

This thesis aims to develop an algorithm to aid in uncovering sequential structures
in EEG signals. The algorithm will transform an EEG signal into a sequence of
symbols. These symbols can form the basic elements of a language, hence the
title linguistic transcription (section 2.2). After transcription, the symbols can be
grouped to form words or n-grams, and their distributions studied. The linguistic
representation allows other algorithms to analyze and exploit possible sequential
information in the EEG traces.

In practice, the algorithm will be implemented for EEGs recorded while presenting
test subjects with visual stimuli. These stimuli elicit ERPs (see section 2.1) when
shown. ERPs are deflections in EEG activity that appear within a short, fixed period
after a sensory event (the stimulus). For data availability reasons, the algorithm will
be applied to the EEG responses acquired during earlier EEG experiments, described
in section 2.3.

This thesis focuses mainly on the algorithmic, mathematical and machine learning
techniques used, and not on the neuroscientific results obtained. Furthermore, the
focus lies mainly on the extraction and transcription of relevant features from ERPs,
rather than on the analysis and interpretation of the obtained transcription.

2.1 BCI and ERPs

Event-related potentials are positive and negative deflections of the EEG signal
which are time-locked to a specific stimulus and usually appear within 1 second after
that stimulus. Extensive research has shown that they can carry semantical and
contextual information about the presented sensory stimuli[4, 12,24, 25 32]. Their
main benefit lies in the fact that they are time-locked to a stimulus. Hence, it is
possible to define EEG trials by setting a fixed time window, starting at the stimulus
onset with a length of about 1 second, and recording the EEG within these trials.



2. PROBLEM STATEMENT

Trials with a fixed length constrain the dataset’s dimensionality and can be processed
by algorithms without the necessity of searching through the entire EEG signal.

Definition 1 An EEG trial S; € R™ is a columnuwise flattened subsection of the
EEG signal with m channels and n samples in the trial window, a trial duration of ng
with sampling rate ¢ and i € 1,...,r with r the number of trials in the experiment.

Definition 2 The trials S; fori € 1,...,r form the rows of S € R™*" containing
all flattened trials in a recording.

Definition 3 An EEG signal X € R™*"™ {s a concatenation of all (non-flattened)
trials for a recording duration nro.

In general, however, ERPs have an unfavorable signal-to-noise ratio (SNR). In
order to tackle this problem, trials are often repeated and averaged together to
extract the ERP[38]. Because this thesis is interested in individual ERP responses
and their context (surrounding ERPs), averaging cannot always be applied. After
all, when repeating a stimulus, its context may have changed. Averaging sequences
of multiple responses to retain context would increase the length of experimental
recordings, which is impractical. Instead, this work will tackle the SNR problem by
applying spatio-temporal filtering using beamforming (see section 3.3).

An ERP consists of multiple components with a fixed naming scheme. For
instance, when the ERP shows a positive deflection 300ms after the stimulus onset,
this is denoted as the P300 component (P=positive). Research has shown that
different components carry information about different brain processes involved in
processing the stimulus. Of specific interest for the linguistic transcription is the
P300 component, which is related to the working memory[5] and which is the most
prominently activated component in the experiments that provide the data for the
development of this algorithm.

2.2 Linguistic transcription

The goal of the linguistic transcription algorithm is to map a sequence of ERPs to a
sequence of symbols as defined by Definition 4.

Definition 4 The linguistic transcription algorithm learns a transcription function
T :R™ — D :S;— T(S;) which maps an EEG trial S; to a symbol v; € D with D
a dictionary (set of symbols) of variable size, such that trials that map to the same
symbol will contain an ERP response with similar morphology.

When performing the BCI experiment described below, the brain consistently pro-
duces ERPs. The core idea of the algorithm is to extract numerical features from
the components of each ERP and then assign a symbol based on those features.
Linguistic transcription allows for easy sequential analysis, both manually and
automatically. Experts and algorithms can detect structures in the transcribed

6



2.3. The N-back task and BCI paradigm
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Figure 2.1: Average of all target trials for 1 subjects in a 1-back experiment, showing
multiple ERP components. A trial window starting 200ms before stimulus onset and
ending 1000ms after is used. Channels corrupted by noise are indicated in gray.

words by looking for sets of co-occurring symbols or relating symbols to the stimuli
presented.

A related use case for the algorithm is to transcribe responses to linguistic stimuli
for textual BCIs. Instead of analyzing ERP responses to single words in a sentence[!2],
entire sentences can now be analyzed. The transcription could then directly reflect
semantic and lexical concepts of the brain functions, such as context build-up. When
all n-grams of symbols are aggregated in a dictionary, statistical analysis can confirm
hypotheses about the distribution of words and patterns.

2.3 The N-back task and BCI paradigm

In order to develop the transcription algorithm, EEG data gathered in another BCI
study was used. This research by Pergher et al.[17,1%] focused on the so-called
N-back training task and its transfer effects to other cognitive tasks.

The N-Back task was introduced in multiple variants in 1958[31] and 1959[39],
initially as a working memory training task, and later introduced in neuroscience
and EEG studies[20]. In the N-Back task, a screen shows visual stimuli to a test
subject for a short time at fixed intervals. The subject is asked to press a button if a
stimulus matches another stimulus, shown NV intervals back with N a fixed number
for the task. If the currently shown stimulus matches the N-back stimulus, it is
denoted as a target stimulus. An example is shown in Figure 2.2. Common N-Back

7



2. PROBLEM STATEMENT

levels are 1-back, 2-back and 3-back. 0-back is sometimes used as a baseline or for
validation.

The N-Back BCI paradigm is suitable for the initial development of the linguistic
transcription hypothesis because of two reasons. Firstly, when executing the N-back
task, the brain consistently produces ERPs at a fixed time after stimulus onset,
resulting in a dataset of non-overlapping EEG trials containing ERPs. Secondly, a
concrete hypothesis can be attached to the transcribed results to study the algorithm’s
capability of extracting sequential information from a series of ERPs, as described in
section 5.1.

The specific N-Back tasks used in this research are visual 1-back, 2-back and
3-back tasks as defined by Pergher et al. (2018)[17]. On a screen, stimulus pictures
are shown for a duration of 1000ms, followed by a 2000ms inter-stimulus interval.
In this interval, the subject is asked to focus on a fixation cross in the center of the
screen. The shown pictures consist of easily recognizable objects (e.g., a dog, an
apple, ... ). Each recording consists of 180 1-back level trials followed by 180 2-back
trials and 180 3-back trials.

Each time a subject observes a target or non-target stimulus, their brain evokes
an ERP response. Studies regarding the N-Back paradigm often focus on the P300
component of the ERP. Several studies have shown that task complexity, information
transmitted to the subject, and training level influence the amplitude[27, 28,3234, 45]
and latency[18, 50] of the P300 potential in N-Back and similar tasks, like the
Sternberg task. The general morphology of the P300 ERP component has been
studied extensively[58]. The P300 component in an ERP response to an N-back

trial stimulus encodes useful information for the algorithm to transcribe. Other

t v

Time +

Figure 2.2: Graphical rendition of a visual 2-back task with one target (T) preceeded
by two non-targets (N).



2.4. Requirements and challenges

components may also be of interest.
To simplify notation, trials containing target and non-target responses will be
marked as T and N in the rest of this work, as defined below:

Definition 5 The sets containing trials of target and non-target trials in a recording
will respectively be denoted as St and Sy Similarly, N-back level trial sets are denoted
as Sl—back; SQ—back and Sfi’—back-

Finally, since interest lies in sequential analysis of ERPs, a sequential notation is
defined as follows: target trials directly following another target trial are marked
with TT. Similarly, target trials following a non-target trial are marked with NT. The
same notation can also mark non-trial targets following a target trial or another
non-target trial respectively as TN and NT.

2.4 Requirements and challenges

The algorithm developed in this thesis should meet two basic requirements: 1) The
resulting sequence of symbols should capture sequential information present in ERPs,
meaning that it should be possible to measure the effects of stimuli and ERPs that
appear earlier in the sequence have on any given ERP. It should also allow for
comparison between single ERPs that occur in series and make it possible to analyze
differences in ERPs arising from their position in the sequence relative to other ERPs
or stimuli (i.e., their context). 2) Modelling techniques used in the transcription
algorithm should be transparent or white-box models. Transparent models allow for
the interpretation of results obtained using data mining or pattern analysis methods
on the transcribed sequence. A researcher should be able to directly link the shape
of components in the ERP to a transcribed symbol. This requirement restricts
the algorithm from leveraging black-box machine learning methods such as neural
networks.

A transcription algorithm that fulfills the above requirements should tackle
several challenges : 1) EEG signals inherently are subject to very high noise levels.
The signal-to-noise ratio in the available EEG data is too low to directly make
inferences about ERP features without first filtering out noise. The noise consists
of electromagnetic signals that are not of interest and carry no information but are
also picked up by the EEG recording hardware and combined with the signal of
interest. Noise signals can originate from electrical appliances in the environment,
from neurological activity or muscle movement of the subject, which is not of interest.
The power of these combined noise signals is considerably higher than the power of
the signal of interest. The EEG scalp recording picks up a mixture of noise signals
and the signal of interest, making it hard to isolate relevant features from noise.
2) Due to the cost (both time and money) of carrying out medical EEG experiments,
data availability is low. No EEG experiments were designed and carried out for this
thesis. Instead, recordings for an experiment with another purpose, described in
section 2.3, were used to develop and test the transcription algorithm. The data
consists of EEG recordings of limited length for a few test subjects. 3) Due to the
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2. PROBLEM STATEMENT

nature of the IN-back task, the ERP dataset is imbalanced since the number of
targets is significantly lower than that of non-targets. 4) Finally, due to the lack of
techniques for sequential ERP analysis until now, very little earlier research directly
applicable to this topic is available.
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Chapter 3

Literature Review

In the past, there have been few attempts at crafting a linguistic transcription of an
EEG signal. Most research that transcribes the EEG signal to a sequence of symbols
focuses on symbol dynamics or direct annotation of the signal (section 3.1), and is
not able to isolate features with signal-to-noise ratios of the same level as ERPs. A
set of features for a single-trial ERPs needs to be defined to attribute a symbol to
an ERP. Current ERP feature extraction techniques are reviewed (see section 3.2).
Finally, as it will become clear that these techniques are still vulnerable to low SNR,
the spatio-temporal beamformer is introduced to cope with some of the drawbacks
(see section 3.3).

3.1 Related work

A few studies have transcribed the EEG signal to a sequence of symbols for analysis
with symbolic dynamics (SD) [29,16], with the most notable method described in a
2010 paper by Tupaika et al.[53] Symbolic dynamics is a mathematical technique to
model non-linear chaotic systems as a space of sequences of abstract symbols[19].
The idea to apply SD to EEG stems from an earlier successful application of symbolic
dynamics to construct a classifier for the electro-cardiogram (ECG)[57]. When
applying SD, results achieved with ECG data (electromagnetic heartbeat activity)
are generally better than those obtained from EEG data because of the lower
complexity of the ECG signal. Given an EEG signal X with x; an individual sample,
SD constructs a sequence of symbols by thresholding the signal at different levels,
dividing the signal into discrete categories, which can be assigned a symbol.

In contrast to the problem statement of this thesis, the SD algorithm directly
translates each data point to a symbol, not taking into account the trial windows or
information about present ERPs. The fact remains that this method is susceptible
to noise and is not suitable for annotating ERPs, which have a particularly low
SNR. Single EEG trial amplitudes can vary significantly due to contamination of
other signals. Another issue is the fixed alphabet size required by SD. In the study
mentioned above, the alphabet contains only four symbols. If the goal is for the
transcription to reflect sequential structures in the ERPs, it is very restrictive. It
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3. LITERATURE REVIEW

might be possible that more symbols are needed to represent the required information.
A data-driven solution to determine the number of symbols would be more suited to
cope with this problem, since little prior knowledge about the sequential information
present is available. In conclusion, directly thresholding the amplitude of the EEG
signal on a priori fixed intervals is a relatively simple technique that might be
suitable for SD analysis, but would probably not result in an informative sequence
for other analysis techniques. The SD research does, however, provide useful insights
in analysis methods for a transcribed sequence, like the statistical analysis of the
distribution of n-grams in the transcribed sequence.

More recent research has been carried out in the field of automatic EEG clustering
and annotation. Multiple frameworks aim to either automatically annotate EEG
recordings for relevant clinical brain events, or assist an expert in doing so. In
general, they follow a similar approach. First, continuous EEG signals are split into
time segments according to some metric which defines homogeneous subsequences
in the signal. Next, several features are extracted from each segment. While older
algorithms[19, 37, 44] mostly use wavelet transform as a method to extract features,
newer frameworks also take into account morphological features of EEG segments
in the time and frequency domain|[9, 26, 51]. These features have been identified
to contain relevant EEG information[l, 7]. Finally, some form of clustering or
quantization assigns a categorical descriptor to each segment. Each category can
trivially be described by a symbol to obtain a linguistic transcription from such a
method.

The one other symbolic EEG transcription result, developed in 2017 by Du-
rand[15], applies a similar method. This work aims to transcribe the EEG signal in
order to process it with push-down automata (PDA) to allow for easier waveform
detection and classification. While PDAs can efficiently process a sequence of symbols,
detection of sequential structure by the use of PDAs would only shift the problem
to the construction of an appropriate PDA, which in itself is a hard task. EEG
signal segmentation of the signal is carried out by applying a function that splits the
time series into homogeneous subsequences, which are then transcribed based on the
clustering of features extracted from the segments. Some of the above algorithms
also use a similar segmentation approach but do not explicitly construct a symbolic
sequence. They focus on the clinical applications of automatic waveform annotation,
in particular epileptic seizure detection.

Since the data obtained from the N-back experiments is already segmented into
trials, it is only necessary to find a method to extract informative features from the
ERPs in the trials. These features can then be mapped to symbols from a dictionary
D using classic unsupervised machine learning techniques. A shared problem with
the above approaches is the fact that they are designed to detect large scale EEG
events and deflections in the signal and will probably not be able to cope with signals
with a much lower SNR like ERPs. Without sufficient filtering or feature extraction,
ERP signals would be lost amongst the other signals originating from inside the
brain and from the environment.

Finally, methods exist to calculate noise-reduced, sparse approximations of the
EEG signal. In sparse approximation, each signal trial is represented as a linear
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combination of some basic signal elements which are part of a dictionary of signals.
These dictionaries can be either fixed Fourier or wavelet dictionaries, or dynamic
dictionaries determined by dictionary learning[3,22,412]. The latter is a data-driven
approach to determine the optimal dictionary of elements representing the different
basic shapes of EEG (and ERP) features and is related to blind source separation.
After successful dictionary learning for ERPs, it should be possible to quantize the
sparse representations of the EEG trials, thus obtaining a categorical and transparent
transcription of the ERPs. Furthermore, learning dictionaries per subject could
cope with high inter-subject ERP variability. While state-of-the-art multivariate
dictionary learning results look promising, they have not been applied to a similar
use case, and more experience in EEG and ERP modeling is required to implement
correct dictionary models successfully.

3.2 Single-trial ERP analysis and classification

Several single-trial ERP analysis methods have been developed to improve the speed
and performance of visual P300 based BCIs, decreasing the need for trial repetition
and averaging. Most of these methods focus on the classification of the P300 ERP
component in applications like P300 speller BCIs for motor-impaired patients[!7].
Single-trial ERP analysis models can be split up into two categories.

On the one hand, more advanced machine learning techniques like multilayer
feed-forward neural networks[11], convolutional neural networks[10,10] and linear
support vector machines[!1,35] have been applied directly to measured trials. These
methods consider measured amplitudes in a subset or transformation of channels and
time samples of the trial as features for classifiers. Since these models are black-box
classifiers, the relevant component activation and other ongoing brain activity and
external noise are jointly modeled.

In some cases, better performance can be achieved using prior knowledge of the
expected ERP, like scalp distribution and timing information. This approach leads
to the development of a second class of models that can leverage this information
to model signal and noise separately. Some models develop a spatial[(] or spatio-
temporal[30, 56] filter, which can be applied to the multivariate EEG signal before
the classification layer. Crucial to the development of these models is the correct
estimation of the subject-specific multivariate covariance matrix[6], which can be a
hard problem due to the presence of excessive noise or lack of data since a sample
covariance matrix is highly sensitive to outliers. Therefore, regularization techniques
such as shrinkage for covariance matrix estimation may be appropriate. The spatio-
temporal beamformer[56,59] achieves state-of-the-art classification performance.

There is an ongoing debate in the computational neurosciences community
whether linear or non-linear models are best suited for ERP classification[!3]. In low
data availability cases, linear models have proven to be more succesful[13]. Linear
methods like linear discriminant analysis have also shown to be effective for P300
ERP classification[1].
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3.3 Spatio-temporal beamforming

In signal processing, a beamformer is a linear spatial filter that focuses a receiving
array of sensors (antennas) on a signal of interest, originating from a specific location
while attenuating signals originating from other sources (noise). A spatial beamformer
produces a single channel output signal as a linear combination of the multi-channel
signal received at the sensor array and a set of weights, one for each sensor[54].
Formally, the beamformer is defined by its weights ws), € R™*! which can be applied
to signal S; € R™*!resulting in the measured signal of interest y by calculating

Ytmp = w'.grpS (31)

for m sensors. The spatial filter reduces a multi-sensor/channel signal to a single-
channel signal so that only the signal of interest is present in the output signal. While
this can be entirely implemented in software, the sensor array is, in a sense, forming
a ‘beam’ to the source of the signal of interest and only picking up electromagnetic
activity from that direction.

In BCI, spatial beamforming can be used to isolate a specific signal of interest,
originating from a source equivalent dipole within the brain, from other recorded
signals and noise[23]. In order to calculate an appropriate beamformer, an activation
pattern is required. The activation pattern (AP) is a template of the signal of interest
as measured at the beamformer antennas, or, in the BCI case, the electrodes at the
subject’s scalp. Figure 3.1 shows examples of spatial activation patterns, isolating
a signal originating from a source in the brain, and temporal activation patterns
isolating a source which exhibits the specified behavior over time.

In ERP analysis, the spatial beamformer can be extended to a spatio-temporal
beamformer, which is a recent technique first developed by Van Vliet et al. (2015)[50].

electrodes

measured at electrode

temporal
activation
patterns

1.0

Figure 3.1: Illustration of separate spatial and temporal activation patterns. Colors
at the electrodes represent the values in the spatial activation pattern for the source
equivalent dipole of the corresponding color.
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This beamformer no longer isolates a specific ERP signal from a spatial origin but
scores a specific component within the ERP, the component of interest (Col). The
main benefit of spatio-temporal beamforming is that it allows for the extraction of
relevant features, like the amplitudes of Col’s, from single ERPs, thus circumventing
the need for ERP averaging. The construction of a spatio-temporal beamformer
defines the Col by a spatio-temporal activation pattern, a template matrix containing
amplitudes for each channel and time sample within an ERP time window.

While multiple approaches to calculate beamformers exist, Van Vliet et al. make
use of the linearly constrained minimum variance (LCMV) beamformer, which has
also proven useful in isolating EEG activity in Van Veen et al. (1997) [55] Van Veen
et al. define the the original spatial LCMV beamformer by its weights (Equation 3.2)
and a linear constraint (Equation 3.3) to avoid trivial solutions.

wgp = argminwl,S(w],S)T = arg min w! Y ws, (3.2)
Wesp Wsp
al,wsp =1 (3.3)

Ysp € R™ is the spatial covariance matrix of the signal S and aT € R™*! represents
the spatial activation pattern. Using Equation 3.2 and Equation 3.3 and the method
of Lagrange multipliers, the weights can be calculated as

-1
Ysp Oap (3.4)

Wsp = ——7 —
a;PZSP Qsp

Similarly, a temporal beamformer can be constructed, that calculates weights for
every time point within an ERP time window. This thesis, however, is interested in
the spatio-temporal case, where a spatial and temporal beamformer are combined into
one spatio-temporal filter. The spatio-temporal filter defines weights w € R™**!for
every spatial channel and time point within an ERP response window with m the
number of channels and n the number of time samples, and can be applied to an
EEG trial S € R™*!, Similar to the spatial beamformer, the resulting output y € R
can be calculated with Equation 3.5 and Equation 3.6.

y=uw'S (3.5)
Y 1g
W=y, (3:6)

with ¥ € R™"X™" the covariance matrix of S and a € R™*! a spatio-temporal
activation pattern.

In summary, the spatio-temporal beamformer is a linear filter that, given a
template of one or more ERP Cols, returns a single score for the amplitude of the
specified Cols, suppressing all other activity or noise. The question remains on
how to construct these templates. An activation pattern should indicate in which
channels a Col has the highest gain, and at which time points the component reaches
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3. LITERATURE REVIEW

a maximum or a minimum value. In principle, an expert neuroscientist with prior
knowledge of the brain activity and regions that cause the component, and of the
propagation of the electrical brain signals to the EEG sensor electrodes can construct
an activation pattern manually. Clearly, this is a complicated and inconvenient task.
Furthermore, brain activity responses can vary significantly between test subjects and
EEG recording sessions, which poses the need to recalculate the activation pattern
for the analysis of each recording.

Another possibility is a data-driven approach to determining the activation
pattern of a Col.[59]. If some EEG trials, of which it is known that the Col is
present, are available, these can be used to determine an approximation of the
ideal activation pattern of the Col for a given subject and recording session. First,
the trials containing the Col and the trials not containing the Col are separately
averaged together. Averaging removes independent background noise, which varies
per trial. Next, the activation pattern that captures the Col is constructed as
the difference between the averages of Col and non-Col trials. This subtraction is
denoted as contrasting and removes components present in both averages but not of
interest (e.g., visual baseline activity). Figure 3.2 shows an example of a data-driven
spatio-temporal activation pattern for the N-back dataset.

In the N-back experiment, the P300 ERP component is present in all target
trials (and, to a lesser extent, in non-target trials). If prior knowledge is available
indicating which trials contain responses to targets and non-targets, an activation
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PO4 - 15

Pz - - 10

Channel
Q)
N
1
1
o
Amplitude (uVv)

F4 - - 10

1 1
-0.2 0 0.2 0.4 0.6 0.8 1
Time (s)

Figure 3.2: Data-driven spatio-temporal activation pattern for the P300 component
and related components that are activated by the N-back experiment, constructed as
the difference wave of 1-back target and non-target averages for Subject 1. Corrupted
channel Cz will be removed from the data before beamforming.
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3.3. Spatio-temporal beamforming

pattern containing all activated components in a target trial, most notably the P300
component, can be constructed.

Because the spatio-temporal beamformer allows the ERP analysis to focus on
specific components in single trials, faster and more efficient ERP classifiers can
be built[59,60]. However, these classifiers are highly dependent on the activation
pattern and the amount of data available to estimate the covariance matrix.
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Chapter 4

Methods

This chapter first gives an overview of the recording and preprocessing method
and the resulting N-back dataset (see section 4.1). Next, methods for linguistic
transcription are developed. The linguistic ERP transcription procedure consists of
two steps. First, spatio-temporal beamformers extract features from the individual
trials (see section 4.2). An ideal feature extraction technique that can simultaneously
account for the high SNR and inter-recording variability should balance the data-
driven approach to determine the activation of ERP components with prior knowledge
about the expected timing and spatial distribution of these components. Afterward,
each trial is assigned a symbol based on these features and an unsupervised learning
algorithm (section 4.3).

4.1 Recording & preprocessing

This study uses N-back experiment data from 4 recordings of different subjects. For
each subject, the EEG was recorded as described in Pergher et al. (2018):

“EEG was recorded continuously from 32 Ag/AgCl electrodes at a sam-
pling rate of 2 kHz using a SynampsRT device (Neuroscan, Australia).
The electrodes were placed at O1, Oz, 02, PO3, PO4, P8, P4, Pz, P3, P7,
TP9, CP5, CP1, CP2, CP6, TP10, T7, C3, Cz, C4, T8, FC6, FC2, FC1,
FC5, F3, Fz, F4, AF3, AF4, Fpl, Fp2. The reference was placed at AFz
and the ground at CPz. Additionally, four electrodes were placed around
the eyes, on the upper and lower side of the left eye (vertical) and near the
external canthus [corner| of each eye (horizontal), for electro-oculogram
recording (EOG, bi-polar recording).” [17]

Figure 4.1 shows the location of these electrodes on the scalp. Analysis of recorded
data was carried out in MATLAB using the EEGLAB toolbox][!1], preprocessing and
spatio-temporal beamforming software of the Computational Neuroscience group at
KU Leuven, and custom MATLAB code.

In order to analyze ERPs in EEG trials, the continuous EEG signals first need
to be preprocessed to remove some types of noise and then cut into non-overlapping
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4. METHODS

Figure 4.1: Recording electrode scalp positions. Reference electrodes are indicated
in blue.

trial windows. First, the signal X is re-referenced to the mean of electrodes TP9 and
TP10, since brain signals are weakest at these electrodes due to bony structures in the
skull. Next, the signal is band-pass filtered between frequencies 0.5Hz and 15Hz using
a fourth-order Butterworth filter. For each subject, visual inspection determines
the channels that are corrupted by noise. These channels are dropped from the
subject’s data. The filtered signal is then cut into trials starting 100ms before each
stimulus and ending 1000ms after. The 100ms pre-stimulus window contains no ERP
information but is used to center each trial by subtracting the average pre-stimulus
baseline activity from the trial. Finally, each trial is downsampled to 100Hz to
decrease dimensionality, resulting in processed trials S:€®™" with m the number of
remaining channels and n the number of time samples in a trial.

For each subject, trials that contain noise that is several orders of magnitude
larger than the signal are identified by visual inspection and marked. When a trial
has a noticeably noisy impact on an average in which it is included, it is marked as
corrupted. These trials are not yet dropped from the dataset but are excluded when
averaging over trials and estimating sample covariance matrices. In applications
outside of this experimental setting, where manual trial rejection is not appropriate,
the electrooculogram recording can be used for ocular artifact correction with the
RAAA method[13] to mitigate the impact of noisy trials. Table 4.1 gives an overview
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of the available data after channel and trial rejection.

4.2 Multi-component beamforming

In order to construct a beamformer for feature extraction, a single, data-driven
spatio-temporal activation pattern a can be constructed for each subject using
Equation 4.1.

Z Sl—back,T _ Z Sl—back,N
#Sl—back,T #Sl—back,N

C_l:

(4.1)

This activation pattern is denoted as the grand average activation pattern, adopt-
ing the terminology of Van Vliet et al.[50] It is essential this pattern correctly capture
the informative ERP components in the N-back task. N-back ERP responses are
strongest in the 1-back task. Furthermore, informative components are mainly
activated in target trials and to a much lesser extent in non-target trials. Lastly,
the averages used to determine the data-driven activation pattern should not be
corrupted by trials with extremely high noise levels. Hence, the data-driven activation
pattern is constructed from 1-back trials that are not marked as containing extreme
noise, while contrasting trials against non-trials to eliminate brain activity that is
not of interest.

Tuning the grand average activation pattern using prior information about the
timing at which the Col is expected to appear can increase he spatio-temporal
beamformer’s performance for a specified task[59]. A specialized activation pattern
can be derived from a by specifying a time window and setting all values outside
that window to zero. Applying a window allows the beamformer to focus only on the
components present in this time window of the trial while ignoring other components
present in the grand average activation pattern. Consequently, the use of windows
makes it possible to obtain a specific score for the components in the specified window,
instead of a single score for all the components in the trial.

A beamformer with a window for a single component is probably not sufficient to
pick up contextual differences in ERP responses, which are smaller than component

Table 4.1: Number of available target (T) and non-target (N) trials per subject. Trials
corrupted by noise are counted separately (C).

1-back 2-back 3-back
T N C T N C ‘ T N C noisy channels

Subject 1 | 45 127 8 44 122 14 | 43 116 21 | Cz

. 02,P04,P4,Pz,
Subject 2 | 37 112 31 |44 127 9 37 106 37 CP1,FC1,FC5, Fpi
Subject 3 | 43 127 10 | 45 129 6 48 126 6 0z,FC2
Subject 4 | 47 131 2 48 131 1 45 132 3 -
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Figure 4.2: Visualization of average 1-back target and non-target trials for each

subject.
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amplitude or latency differences between targets and non-targets. In turn, a single
beamformer with a larger window that covers more ERP components has the
disadvantage that it cannot pickup sufficient detail, and can only score a trial
as, e.g., ‘more target-like’ or ‘less target-like’ for an activation pattern constructed
as the T-N difference wave. Therefore, an ensemble method in which multiple
beamformers each focus on a specific window or component could produce better
results. The features derived by such a method should contain more information to
feed into a transcription algorithm than the the unidimensional output of a single
spatio-temporal beamformer.

To counter the drawbacks of using a single spatio-temporal beamformer, multiple
beamformers based on different activation patterns are trained for each subject.
Each beamformer will extract a different feature from the ERP present when applied
to a trial, resulting in a feature vector y; € R for trial S; with ¢ the number of
beamformers, or a feature matrix Y € R"*¢ for all trials. The activation patterns of
the beamformer determine what the features represent.

Initially, multiple activation patterns were crafted based on difference waves
between different trial/non-trial subsequences. However, this approach was aban-
doned due to low data availability for some subsequences, and because it presumes
that these activation patterns capture relevant information, of which no proof is
available. Instead, each activation pattern in the multiple beamformers approach
corresponds to one or more specific ERP components, leading to an ensemble denoted
as multi-component beamforming.

4.2.1 Focus window component activation patterns

By definition, the grand average activation pattern includes ERP components that
are present in targets and not, or to a lesser extent, present in non-targets.

By setting all time samples outside a specified time window to 0, the spatio-
temporal beamformer will only focus on components occurring within that time
window, ignoring earlier and later components. Figure 4.3 shows an example of these
component activation patterns. When one of these component activation patterns
is correctly constructed to capture only the desired component, the output of the
beamformer applied to a given trial for this activation pattern can be interpreted as
the score of that component in the trial (cfr. section 5.1). The latter is a desirable
property, since it makes the process transparent, in the sense that an extracted
feature can directly be linked to a neuroscientific concept that can be of interest in
analysis.

Since the N-back task is a visual attention based task, the relevant components
in the ERP responses are P100, N100, P200, N200 and P300 components[52]. The
negative component occurring between 700ms and 900ms as visible in Figure 3.2
is also included. Ideally, a distinct time window would be assigned to each of
these components. However, this is not possible since components can overlap in
time and scalp distribution. Therefore, some component activation patterns will
capture multiple components. The output of the beamformer then no longer directly
correlates to a component amplitude, but rather represents a combined score for the
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Figure 4.3: Focus window component activation patterns for Subject 1.

components present in the window. This combined score results in information loss
since components can no longer be evaluated separately. These problems will be
addressed in subsection 4.2.2.

Table 4.2 lists the time windows used in the multi-component beamformer, and the
components captured by each activation. Once these activation patterns are created,
the spatio-temporal beamformer can trivially be extended to a multi-component
spatio-temporal beamformer by learning a filter vector for each of the activation
patterns and applying these filters separately to a given trial. The spatio-temporal
covariance matrix 3 can be estimated once from all available data and reused in the
calculations of all w;. This procedure leads to the procedure in Algorithm 1 which
returns feature matrix Y from trials S as a vector y; of component scores for each
trial S;.

4.2.2 Refined component activation patterns

As mentioned above, the component activation patterns created with focus windows
have several drawbacks. Overlapping components that reach their peak at around
the same time can obscure each other’s amplitudes. To achieve a pure activation
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Table 4.2: Time windows for focus window component activation patterns.

AP time window channel window ERP components

1 100-200ms all P100

2 200-300s all N100,P200
3 300-600ms all N200,P300
4 600-900ms all

Algorithm 1 Focus window multi-component beamforming trial feature extraction
procedure

1: procedure MCBF1FEATURES(X, ¢, windows)
2: S, ¢ + PREPROCESS(X, ¢p)
S* < S\ BADEPOCHS(S)
- Z Sik—back T Z Sf—back N
O TSTacer  #SLnacn
for je1,...,cdo
Ustarts Lend ¢ windows;
a<—a
a[:, 1... tstart¢] ~—0
aliyteng®...m| <0
10: wj = CALCULATESTBF (a, 5¥)
11: Yij = w]T-Si for S; € §

12: return Y

pattern that is only focused on a single component of interest, the activity from other
components that are active in the window for the Col needs to be subtracted from
the component activation pattern. Since the data-driven grand average activation
pattern a is measured as an additive combination of components, it is non-trivial
to separate these components from each other without constructing an anatomical
forward model for their independent activation as measured at the scalp using a
priori knowledge concerning the electromagnetic activity in the source equivalents
and the conductivity of the tissue between the generators and the electrodes. This
mixture of component activations leads to a cocktail party problem, in which the
individual Col activation patterns have to be derived from a.

Therefore, a second approach to component activation patterns is developed
in addition to the windowing method in subsection 4.2.1. Since the data-driven
approach to determine activation patterns avoids using prior information about the
source equivalents in the brain and only leverages information about the timing and
spatial distribution as measured on the scalp, no source separation model is developed.
Instead, an approximate method is developed to refine component activation patterns
determined by a window in such a way that activity from other components than
the Col is suppressed. This approach is based on the procedure to construct a Col
activation pattern proposed by Van Vliet et al. (2015)[56], with some adaptations to

25
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better tailor the resulting activation patterns to other components than P300. The
refinement procedure for a Col activation pattern, as described by Algorithm 2, starts
from the grand average activation pattern a and a prior estimate of the time window
and set of channels in which the Col reaches its peak. These time and channel
windows can uniquely define a component, even when overlapping components are
present. The procedure starts by identifying the time point t,c, in the time window
at which the Col reaches its maximum or minimum in a. At this time, most of the
activity in @ can be assumed to originate from the Col. Hence, the activation at
tpeaks @[, tpeak®] With sampling rate ¢ can be regarded as a spatial activation pattern
asp € R™ for the Col, leading to the construction of a spatial beamformer wgp, using
Equation 3.1. Before calculating the beamformer weights wgp,, all channel values
in asp, with opposite sign as the amplitude of the Col peak are set to 0, in order
exclude other components that are active at the same time. The spatial beamformer
for the Col wg, can be applied to the trials in S* using Equation 3.1. The spatial
beamformer maps each trial S to a single-channel trial S/ € R" containing the
temporal activation of the Col during that trial.

Analogous to the construction of the grand average activation pattern, a new,
temporal activation pattern a¢mp € R™ for the Col can be constructed using the
difference wave of 1-back target and non-target spatially filtered trials in S’. Each
temporal activation pattern reaches its peak when the respective Col is most active.
However, earlier or later components with a similar spatial distribution may also
be present in atmp. Therefore all values in aymp, outside the zero crossings, minima
or maxima surrounding ... are set to zero. Finally, the refined activation pattern
a € R™" is the columnwise flattend product aspagmp.

Algorithm 2 Single component activation pattern refinement procedure.

1: procedure REFINEACTIVATIONPATTERN(a, S*, time_window, channel_window)
2 tstart, tend < time_window

3 tpeak < argmax, | > a[channel_window, t¢|| with tsam <t <tepg
4 Qsp < C_l[l, tpeak¢]

5: foriel,...,mdo

6 if sign(aspli]) # sign(}_ a[channel_window, tpeqr¢]) then

7 aspli] < 0

8 Wsp ¢~ CALCULATESPATIALBF (agp, S™)

9: for S7 € S* do

r_
10: Sz = wSTpS;k
11: a . Zsi—back,T _ Zsi—back,N
' tmp #Sifback,T #Sifback,l\l
12: titare < index of first minimum of |aimp| before tpeqr
13: t!,.4 < index of first minimum of |a¢mp| after ¢peq
14: atmp[]. “ee tlstart(b} < O
15: GmpltL,g®---n] <0
, T

16: @ 4= Asplipmp
17: return o
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4.3. Quantization

This ap refinement procedure gives rise to a second ERP feature extraction
algorithm, listed by Algorithm 3. Table 4.3 defines time windows and channel regions
as input for the refinement procedure. Values for time windows and channel regions
were experimentally determined to match the correct component in all subjects
but can be tuned with additional prior information about the spatial and temporal
activation of the desired component. In total, 5 component activation patters can be
extracted, as illustraded in Figure 4.4.

Algorithm 3 Refined multi-component beamformer trial feature extraction proce-
dure.

1: procedure MCBF2FEATURES(X, ¢, time_windows,channel_windows)

2: S, ¢ + PREPROCESS(X, ¢)

S* <— S\ BADEPOCHS(S)

Zsf-backx _ Zsf-back,n

5] back, 5 backy

for je1,...,cdo
a < REFINEACTIVATIONPATTERN(a, S*, time_windows, channel_windows)
w; = CALCULATESTBF (a, 5*)

for S; € S do
Yij = w]T-
return Y

a <

4.3 Quantization

The extracted trial features are categorized in discrete groups to complete the
linguistic transcription algorithm. A symbol can then be assigned to each group.
There are multiple ways to perform this categorization. The simplest method is to
define a fixed grid in the feature space and assign a symbol to each cell in the grid.
This approach will often lead to many cells without or with only a few trials and is
very sensitive to noise. It also does not take into account the internal structure in the
data, for instance, clusters of similar trials or dense regions, which ideally would be

Table 4.3: Time and channel windows for refined component activation patterns.

AP time window channel window ERP component

Cz,FC1,FC2,Fz,AF3,AF4,Fpl,Fp2,C3,

1 100-175ms FC5,F3,C4 FC6,Fd P100
02,0z,01,P04,P03,Pz,CP1,CP2,P7,P3,

2 200-275ms CP5, P4, P8, CP6 N100

3 200-275ms  Fz,AF3,AF4,Fpl,Fp2,F3,F4 P200

4 300-600ms all P300

FC1,FC2,Fz,AF3,AF4,Fpl, Fp2
5 725.800ms  C2:fol.FG2.Fz,ARS,AF4,Fpl, Fp2,C3,

F3,CP6,C4,F4
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4.3. Quantization

assigned the same symbol. Another approach to mitigate some of these drawbacks
is defining a dynamic grid instead of a fixed grid. Each feature dimension can be
divided into dense regions based on its marginal distribution, and these divisions
can be combined to form a grid. Finally, partitioning clustering was selected to
optimally exploit the density information present in the data, decreasing the number
of symbols required.

Multiple clustering methods were considered. DBSCAN][16] has some desirable
properties, like the ability to automatically indicate outliers as a separate category.
However, due to the lack of clearly pronounced separated clusters in the beamformer
scores, it hard to use density based clustering methods that automatically decide
the number of clusters. Grid-based subspace clustering techniques with fixed[2] or
adaptive[2 1] grid size were also considered since they have the ability to transparently
determine clusters located in only a subset of the features. The latter is a desirable
property since it is not a priori known if all constructed features are informative.
Subspace clustering methods could prove useful in extensions of this work intending
extract more features from each trial, e.g., by constructing multiple localized beam-
formers per time window to better capture the spatial distribution of single-trial
ERPs.

Ultimately, k-medoids clustering was selected as a starting point for its simplicity.
k-medoids is suitable since the features are of relatively low dimensionality, and
because it is more robust to extreme outliers (which might be present due to
noise) than k-means clustering. The use of the Mahalanobis distance accounts
for the correlation between the component beamformer scores (see Figure 4.5).
MATLAB implements k-medoids using the Partitioning Around Medoids[30](PAM)
algorithm, minimizing the Mahalanobis distances between cluster members and the
representative medoid of their respective clusters. After ten repetitions of the PAM
algorithm with random cluster initializations, k-medoids retains the clustering with
the best distance evaluation.

k-medoids requires a specified number of clusters k. Depending on the application
for which the linguistic transcription algorithm is applied as a processing step, this
number k can be set manually to determine the desired dictionary size, potentially
with prior knowledge about the number of tclusters present in the data. In the
general unsupervised setting, however, k is not known a priori. An optimal k£ can be
selected from a range of values according to some criteria.

The first of the criteria used in this work is the Calinski-Harabasz Index. The
Calinski-Harabasz Index is defined as the ratio of the between-clusters dispersion
mean and the within-cluster dispersion|[], given by Equation 4.2.

(4.2)

with B, the between cluster dispersion matrix for a given clustering ¢ with k
clusters, and W, the corresponding within-cluster dispersion matrix. Both dispersion
matrices are calculated from beamformed scores Y using the Mahalanobis distance.
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Figure 4.5: Pearson correlation coefficients of features extracted by the multi-
component beamformer from 1-back target trials of Subject 1.

The Calinski-Harabasz criterion is suited to determine the optimal value for k
if there are distinct clusters present in the beamformer scores for a given set of
trials. However, this is not always the case. For instance, the N-back trials are not
clearly separated in clusters after beamforming. As Figure 4.6 shows, trials and not
trials are not even clearly separated However, this does not mean these trials cannot
meaningfully be divided into groups and no transcription symbols can be defined.

Another proposed evaluation metric tackles this problem. As stated in the
problem statement, the symbols assigned to trials should represent different ERP
morphologies. Therefore, a clustering instance can be evaluated by comparing the
between-cluster spread of the trials. If a reliable grouping is achieved, the shapes
of the ERPs in any given cluster should be sufficiently different from trials in other
clusters. Due to the noise present in single trials, this spread cannot be determined
directly from the trials in the cluster. Hence, all trials in a cluster are first averaged
to form a representative trial for each cluster. Next, a measure of this spread can be
defined as follows:

DIST = —||D¢l2 (4.3)

1
72

for a given clustering ¢ with k clusters. D, is the pairwise Euclidean distance
matrix between the average trial for each cluster. Since the 2-norm of D, is pro-
portional to the number of elements in D,, division by k2 is used as normalization.
Elements in D, can be calculated as

dc _ ZSQ ESC]'

WS, #S.,

(4.4)
with S, all trials in cluster 3.
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This metric is only a measure of between-cluster difference and does not measure
within-cluster similarity. Since the power of noise signals in a single trial is often
higher than the power of the ERP signal, it is hard to directly measure the within-
cluster similarity from the trials without feature extraction. As a consequence, the
developed metric DIST cannot be used as an optimization cost function for the
k-medoids algorithm. A good DIST value is a necessary yet not sufficient condition
for a good transcription result.
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Chapter 5

Experiments

First, an experiment using the spatio-temporal beamformer tests if the available data
contains sequential /contextual structure present in the ERP components activity, and
whether the beamformer can capture this information (see section 5.1). Additionally,
if this experiment produces convincing results, the uncovered sequential structure
can be used as a validation method for the final algorithm’s ability to capture context
in the transcribed symbol sequence. Next, experiments are designed and carried out
to test the performance and expressiveness of the multi-component beamformer for
ERP feature extraction (see section 5.3), and to evaluate the clustering transcription
process of these features (see section 5.4). These experiments do not aim to prove
neuroscientific hypotheses but rather study the effectiveness of the methods described
above.

5.1 Exploratory study

This experiment aims to investigate whether contextual information is present in
the available sequences of ERPs and to show that this information can be extracted
by measuring scores for component activation patterns with the spatio-temporal
beamformer. Therefore, this study tries to verify Hypothesis 1 regarding the N-back
experiment:

Hypothesis 1 Does the fact of whether the current stimulus is a target stimulus or
not affect the processing of future stimuli in the brain?

In order to verify Hypothesis 1, trials will be divided into classes based on
whether they are a target or non-target, and on a fixed-length history of target and
non-targets that preceded that target. For simplicity, these classes are assumed to
be independent. If the hypothesis is correct, the difference in the processing of these
classes in the brain will result in different ERP shapes per class (e.g., higher or
lower component amplitudes or differences in latency). However, these ERPs can not
directly be compared, since noise present in the signal would obscure the differences.
Therefore, two techniques are leveraged to uncover sequential differences: averaging
and the spatio-temporal beamformer with focus window.
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5. EXPERIMENTS

Because the dataset is imbalanced with target trials only making up about one
quarter of trials, it is harder to compare trials based on long histories of target/non-
targets, since for some classes, few samples will be available. Therefore, Hypothesis 1
is narrowed down to Hypothesis 2, only considering a history of length 1.

Hypothesis 2 Does the fact of whether the current stimulus is a target stimulus or
not affect the processing of the next stimulus in the brain?

Provided more data is available, future research could potentially study correla-
tions between the number of targets and non-targets preceding a stimulus and its
corresponding ERP response.

To validate Hypothesis 2, four classes of trials are constructed. Target trials
preceded by a target trial (indicated by TT) are compared to target trials that appear
after a non-target trial (NT). Similarly, TN and NN trial subsequences are compared.
First, the averages of these classes in the 1-back case are visually compared. Figure 5.1
shows the difference between all TT and NT trials and the difference between all TN
and NN as compared to the difference of all T and N trials.

The figure indicates that there is a difference in average response depending
on the previous trial. In the TT/NT case, this visual is not very reliable, since the
occurrence of TT subsequences is low (< 5) per subject and N-back level. However, for
non-targets, the figure indicates that the average P300 amplitude is higher following
a non-target trial.

A second experiment aims to verify whether these differences are significant
and whether they can be captured by spatio-temporal beamforming. Two spatio-
temporal beamformers are constructed: the first one focuses on the P300 component
while the second one focuses on components leading up to the P300. For each
subject, the beamformers filter all 1-back trials. The covariance matrix of the
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Figure 5.1: Contrasts of length 1 trial subsequences compared with T/N contrast for
1-back trials averaged over all subjects. Corrupted channels were set to 0 before
averaging.
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5.2. Results

beamformers is estimated from all 1-back trials. The resulting scores are compared
across subsequences.

5.2 Results

The above experiment is run with time windows 100ms-300ms and 300ms-600ms
after stimulus onset. Table 5.1 and Table 5.2 compare the resulting beamformer
scores per subject for different target/non-target trial subsequences. Similarly to
Figure 5.1, responses to targets following a non-target are compared with targets
following another target and responses to non-targets following other non-targets are
compared to non-targets following a target. As a reference, targets are also directly
compared to non-targets.

First and foremost, it should be noted that the results show little significance,
possibly due to low data availability (cfr Table 4.1) and high SNR, even after
beamforming. However, some results do seem to hint towards a relation between the
previous stimulus and the current response. Especially the scores measured by the
100ms-300ms window beamformer for targets following another target are generally
lower than scores for targets following a non-target, but not enough samples are
available to confirm this. While the results are generally inconclusive, this experiment
seems to indicate that possible contextual variations cannot be picked up by a single
beamformer, motivating the introduction of multi-component beamforming.

Finally, since the experiment did not produce consistently significant results, the
presence of TT-NT and TN-NN differences cannot be used as a validation method for
the expressiveness of the linguistic transcription.

Table 5.1: Wilcoxon rank sum test p-values for comparison of 300ms-600ms window
beamformer output for 1-back trial subsequences.

Subject 1 Subject 2 Subject 3 Subject 4

T-N < 0.0001 < 0.0001 < 0.0001 < 0.0001
TT-NT 0.5056 0.0341 0.7392 0.6743
TN-NN 0.5893 0.1951 0.1060 0.9490

Table 5.2: Wilcoxon rank sum test p-values for comparison of 100ms-300ms window
beamformer output for 1-back trial subsequences.

Subject 1 Subject 2 Subject 3 Subject 4

T-N < 0.0001 0.0006 < 0.0001 < 0.0001
TT-NT 0.2673 0.2731 0.1458 0.3463
TN-NN 0.0796 0.8393 0.5578 0.0688
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5.3 Single-trial classification

5.3.1 Experiment

The next experiment constructs multiple supervised classifiers to predict known
labels in the dataset from the beamformer scores in order to evaluate the expres-
siveness of the features extracted by multi-component beamforming. Three feature
extraction models are compared: the classic spatio-temporal beamformer (STBF),
the focus window multi-component beamformer (MCBF1) and the multi-component
beamformer with refined activation patterns (MCBF2). Each model is combined with
an LDA classifier and evaluated per subject using ten repetitions of stratified five-fold
cross validation. Finally, these models are compared in three classification tasks:
1) distinguishing 1-back targets from 1-back non-targets, 2) distinguishing 1-back
targets from 2-back targets, 3) distinguishing 1-back targets from 3-back targets.
These classes were selected since ground truth for these labels is know in the dataset,
and there are proven differences between ERP responses in each compared class. For
instance, the P300 component has a larger amplitude in 1-back targets than in 1-back
non-targets. P300 also has a lower amplitude and higher latency in 2-back and 3-back
targets than in 1-back targets[17]. Since the linguistic transcription algorithm should
ultimately be able to capture such categorical differences in the symbol groups, these
experiments wil appropriately evaluate the feature expressiveness for transcription.

Each cross-validation fold, the activation pattern and covariance matrix of the
beamformer are determined from the training trials, as well as the training of the
LDA classifier. For experiments 1), 2) and 3), calculating the covariance matrix from
respectively 1-back trials, 1-back and 2-back trials, and 1-back and 3-back trials in
the training set yielded the highest performance. Epochs marked as corrupted by
noise were not taken into account.

5.3.2 Results

Figure 5.2 and Tables 5.3, 5.4 and 5.4 show classifier performance for experiments
1), 2) and 3) using ROCs and the respective areas under the curve.

The obtained results show that the MCBF2 feature extraction performs worst
in almost every case. This lack in performance might be due to several reasons,
most notably that the pattern refinement procedure cannot capture all components

Table 5.3: Classification performance (mean area under ROC + standard deviation)
for 10 repetitions of 5-fold cross validation of classification of 1-back targets and
1-back non-targets.

Subject 1 Subject 2 Subject 3 Subject 4

sTBF + LDA 0.73 £0.09 0.80 £ 0.08 0.62+0.11 0.69 £ 0.80
MCBF1 + LDA 0.74 £ 0.09 0.80 £ 0.08 0.64 £0.10 0.67 £ 0.09
MCBF2 + LDA 0.68 £0.10 0.70 £0.10 0.55 £ 0.10 0.59 £0.12
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Single-trial classification
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Table 5.4: Classification performance (mean area under ROC =+ standard deviation)
for 10 repetitions of 5-fold cross validation of classification of 1-back targets and
2-back targets.

Subject 1 Subject 2 Subject 3 Subject 4

sTBF + LDA 0.61+0.14 0.63 £0.13 0.56 £0.12 0.59 +0.12
MCBF1 + LDA 0.67 £0.13 0.67 £0.13 0.60 +=0.13 0.55 £ 0.12
MCBF2 + LDA 0.61 +0.15 0.62 £0.13 0.3 £0.15 0.56 £0.14

Table 5.5: Classification performance (mean area under ROC + standard deviation)
for 10 repetitions of 5-fold cross validation of classification of 1-back targets and
3-back targets.

Subject 1 Subject 2 Subject 3 Subject 4

sTBF 4+ LDA 0.62£0.12 0.70 £0.13 0.49 £0.11 0.73 £0.11
MCcBF1 + LDA 0.63 +0.12 0.74 £0.14 0.54 £0.14 0.73 £0.11
MCBF2 + LDA 0.64 +0.13 0.62 £0.16 0.45+0.14 0.60 £0.14

specified in Table 4.3 for all subjects. An example of this can be observed when
comparing MCBF2 performance between Subject 1 and Subject 4. In Subject 1,
the performance of MCBF2 + LDA is just slightly lower than the performance of
the other models. For Subject 4, there is a significantly larger gap in performance
between MCBF2 + LDA and other models. Figure 5.3 shows that the second refined
activation pattern for Subject 4 does not capture the negatieve N200 component
as intended, in contrast to the correct behaviour seen in Figure 4.4 for Subject 1.
Hence, features for Subject 4 are less informative, leading to a drop in performance.
Similar activation pattern construction faults can be seen in the refined activation
patterns for Subject 2 and Subject 3. Due to the high inter-subject variability of
ERPs, this problem is hard to tackle. Presumably, the overgeneralization of the
refined activation patterns is another cause of poor MCBF2 performance, meaning
the refinement procedure cancels some of the relevant structures in the unrefined,
windowed activation patterns.

The windowed multi-component beamformer MCBF'1 performs roughly similar,
or, in some cases, better than the original spatio-temporal beamformer STBF for
the presented classification tasks. Relative to STBF, MCBF'1 performs better in
tasks 2) and 3) in comparison to task 1). In task 1), the goal is to differentiate
1-back targets from 1-back non-targets. Because of the nature of the grand average
activation pattern, STBF should be more suited to perform task 1). The generally
higher performance of STBF for task 1) as compared to task 2) confirms this claim.
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5.4 Clustering

5.4.1 Experiment

This last experiment evaluates the performance of the linguistic transcription algo-
rithm with k-medoids clustering while simultaneously finding suiting dictionary sizes
for the ERPs in the N-back data. To ensure the algorithm never attributes the same
symbol to targets and non-targets, the data labeling is used to cluster targets and
non-targets separately. Since k-medoids clustering is relatively robust to extreme
outliers, the transcription algorithm should be able to handle transcribing corrupt
trials, as long as they are not included in the calculation of the activation patterns
and the estimation of the covariance matrix of all subjects. For this experiment,
however, they are discarded to enable better analysis of the structure present in the
data.

For each subject, features are extracted with either MCBF1 or MCBF2. The
covariance matrix for both beamformers is estimated per subject from all available
trials. Subsequently, k-medoids clustering is performed multiple times for k£ ranging
from 2 to 10. For each k, 10 repetitions of k-medoids clustering are calculated, each
repetition selecting the best of 10 PAM repetitions. Finally, the evaluation metrics
defined in section 4.3 are applied.

5.4.2 Results

Figure 5.4 shows the Calinski-Harabasz clustering validity index results. For both
MCBF1 and MCBF2, as well as for targets and non-targets, the Calinski-Harabasz
Index consistently decreases as the number of clusters k£ increases, without peaking
at an optimal k value. The absence of a peak value is an indication that no clearly
separated clusters are present in the data, as indicated above in section 4.3 This
absence could either be caused by the fact that there is little categorical structure
present within target and non-target ERPs and variations lay on a continuum with
no clear variations in density, or this structure is present in features that are not
picked up by the multi-component beamformer, or noise contamination is too high
to observe the clusters. No information which could verify either of these claims is
available for the N-back dataset.

Calinski-Harabasz values for MCBF2 are generally higher than for MCcBF 1. This
could indicate that MCBF2 can pick up more informative features for clustering than
MCBF1, but this contradicts the results from supervised classification results. In the
unsupervised setting, it is impossible to directly determine whether the constructed
clusters reflect contextual structure in the data. Therefore, visual inspection of the
average cluster trials is appropriate to draw conclusions, as well as quantifying the
differences between these cluster representatives, as calculated by the DIST metric.

Figure 5.5 indicates that, for targets, k = 3 clusters is an appropriate value to
capture the variance in ERP shapes for most subjects. This might be related to
the fact that the dataset contains 3 N-back complexity levels. For non-targets, the
optimal k value is less pronounced. Notice that DIST values for targets cannot
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be compared to DIST values for non-targets since the number of non-targets is
significantly lower. Hence, the representatives will be averaged over fewer trials per
cluster, and the averages will contain more extreme values originating from noise,
increasing the euclidean distance between averages. Appendix B shows averages
of cluster members and indicates different clusters contain different ERP shapes.
k = 6 was chosen for these clusters in order to produce results that are visually
differentiable.
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Figure 5.4: Calinski-Harabasz index for k-medoids clustering of beamformer scores.
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Chapter 6

Conclusion

6.1 Summary

As indicated by earlier computational neuroscience and BCI research, ERP analysis
is an inherently hard problem due to high noise levels present in the recorded EEG
signal, which obscure the ERPs. Currently, this problem is often solved by repeating
stimuli several times and averaging the ERP responses together to cancel out noise
independent from the response. However, averaging imposes a penalty on the speed
of ERP-based BClIs and creates an obstacle for techniques wishing to analyze ERPs
in a sequential setting, in which averaging over subsequent trials would filter out the
sequential information present.

For this reason, the field could benefit from a preprocessing step and corre-
sponding representation format for ERPs that allows algorithms to analyze ERP
responses in their context of surrounding stimuli and responses, without the need for
averaging. The proposed linguistic transcription algorithm reduces a single EEG trial
containing an ERP response and added noise to a categorical symbol representing
some characteristics of the ERP response present in the trial. A sequential analysis
algorithm can then process a sequence of these transcribed symbols.

A review of the related research shows a lack of techniques aiming to categorize
or quantize EEG signal trials containing ERPs. Presumably, this can largely be
explained by the unfavorable SNR of ERPs. The available techniques require extensive
forward anatomical modelling. Techniques exist that can accurately evaluate ERPs
while only averaging over a few trials, but these techniques are mostly aimed toward
target /non-target classification and have not yet been applied in the unsupervised
case. The spatio-temporal beamformer is a relatively new state-of-the-art transparent
method for analyzing ERPs in a few repeated trials. Prior knowledge about timing
and spatial distribution can be combined with data-driven methods to fit the subject
when determining the spatio-temporal activation patterns.

The data acquired from the N-back experiments provides a reliable sequence
of ERPs. Several studies have shown that the amplitudes and latencies of ERP
components in N-back experiment trials encode information about the stimulus and
the subject. First, a sequential analysis of these N-back trials was performed to
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6. CONCLUSION

study whether a possible categorization of sequential effects in the IN-back responses
based on the previous response could yield a verification method to check if the
transcription algorithm can capture sequential information. This exploratory study
has not found any significant effects of the previous trial on the current trial. Hence,
the results cannot be used to verify the algorithm’s ability to capture possible
contextual structure. The results also indicate that single-component beamforming
cannot extract information of desired granularity.

The final algorithm combines an extension of the spatio-temporal beamformer
to multiple ERP components with k-medoids clustering to translate the extracted
beamformer scores into symbols. If sufficiently pronounced, sequential effects in ERP
sequences will result in different ERP shapes, which will, in turn, be expressed in
different beamformer scores, resulting in the attribution of different symbols in the
transcribed sequence. The beamformer approach has the added benefit of separately
modeling signal and noise, thus providing a transparent feature extraction method.
Beamformer scores for ERPs can directly be linked to specific ERP component shapes
expressed by activation patterns. Furthermore, a transcribed symbol’s meaning can
also be examined by inspecting the average of all trials being represented by that
symbol.

Supervised classification experiments show that multi-component beamforming
can possibly improve state-of-the-art performance in ERP classification tasks. The
relatively good performance proves that the features extracted by multi-component
beamforming are informative and form a reasonable basis for the transcription
algorithm, especially in the case of the unrefined focus window-based multi-component
beamformer. No convincing cluster structure is present in the features extracted by
the beamformers. It is therefore hard to evaluate the goodness of the method that
transforms these features in symbols, since no ground truth for possible sequential
effects is known. However, visual inspection shows distinct categories of ERP signals.
It is not yet clear how these should be interpreted in a neuroscientific context.

6.2 Future work

The logical next step for this research is to apply the algorithm to a text-based
ERP dataset, which can benefit from the linguistic transcription to study context
build-up by analyzing the distribution of symbol subsequences. The developed
method can then also be evaluated based on expected results. Further research
with a more extensive target/non-target based dataset also has yet to confirm
the classification performance of the multi-component beamformer and test it in
combination with different linear and non-linear classifier models, like, for instance,
decision trees. If multi-component beamforming can consistently exceed the state-of-
the-art performance of the spatio-temporal beamformer, this approach can play a
role in the development of ERP target/non-target based BCIs, like communication
devices for patients suffering from locked-in-syndrome.

The developed algorithm can still be improved in several ways. The construction
of the component activation patterns shows the most potential for improvement. Ac-
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6.2. Future work

tivation patterns that completely isolate a specified ERP component can potentially
be constructed using blind source separation techniques like principal component
analysis, independent component analysis, or dictionary learning. Multi-scale or
latency invariant activation pattern models might also better handle the high vari-
ability in ERP responses. Lastly, activation patterns can be constructed by an expert
with more prior knowledge to better match specific informative components. Another
possibility for improvement is constructing the activation patterns in such a way
that scores can be compared across subjects. Currently, data-driven component
activation patterns differ significantly per subject due to inter-subject variability in
ERP response and noise. More data and per subject tuning are required to smooth
out these differences. Finally, classifiers and unsupervised methods based on the
multi-component beamformer can benefit from feature selection schemes to determine
which components are informative and which introduce noise.
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A. MULTI-COMPONENT ACTIVATION PATTERNS
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Figure A.1: Focus window component activation patterns for Subject 1.
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Figure A.2: Refined component activation patterns for Subject 1.
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B. SyMBOL REPRESENTATIVES
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Figure B.1: Average of target trials per cluster for Subject 1 processed with mcBF1
and clustered using k = 6.
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Figure B.2: Average of non-target trials per cluster for Subject 1 processed with
mcBF1 and clustered using k = 6.
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Figure B.3: Average of target trials per cluster for Subject 2 processed with mcBF1
and clustered using k = 6.
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Figure B.4: Average of non-target trials per cluster for Subject 2 processed with
mcBF1 and clustered using k = 6.
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Figure B.5: Average of target trials per cluster for Subject 8 processed with mcBF1
and clustered using k = 6.
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Figure B.6: Average of non-target trials per cluster for Subject 8 processed with
mcBF1 and clustered using k = 6.
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Figure B.8: Average of non-target trials per cluster for Subject 4 processed with
mcBF1 and clustered using k = 6.
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Figure B.9: Average of target trials per cluster forSubject 1 processed with mcBF2
and clustered using k = 6.
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Figure B.10: Average of non-target trials per cluster for Subject 1 processed with
mcBF2 and clustered using k = 6.
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Figure B.11: Average of target trials per cluster forSubject 2 processed with mcBF2

and clustered using k = 6.
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Figure B.12: Average of non-target trials per cluster for Subject 2 processed with
mcBF2 and clustered using k = 6.

63



B. SyMBOL REPRESENTATIVES

PO4 - [

Channel
I}
B
|

IR0
F3- I|W|II 1l

PO4 - i
T

Channel
o
S
\

Time (s)

0.6

25 trials

17 trials

N

o

Iw’

0.6

0.2 0.4
Time (s)

22 trials

30 trials
L]
L]
|

I

i
,
0.8 1

Ot v

.2

0

]
i

MI Il

24 trials

18 trials

m

0.2

-
04 06

Time (s)

20

15

10

=10

-15

=20

Amplitude (uV)

Figure B.13: Average of target trials per cluster forSubject 8 processed with mcBF2

and clustered using k = 6.
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Figure B.14: Average of non-target trials per cluster for Subject 3 processed with
mcBF2 and clustered using k = 6.
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Figure B.15: Average of target trials per cluster forSubject 4 processed with mcBF2
and clustered using k = 6.

20

Q2 - 65 trials 80 trials 61 trials

ba- Wk

I|WIIIIII 15
f

CP1 - i
10

Channel
I}
B
)

' T

u

02- 84 trials 52 trials 52 trials

\
o
Amplitude (uV)

|||| [ -3

i
k0

Channel
o
R
|

i
I
Cz- iy
C3-
FC2 - TG T
FC1- HNARE ) RN

-15

Fz- L] IIIIIIII T

- ! ! ‘ ‘ -20
0 0.2 0.4 0.6 0.8 1
Time (s) Time (s) Time (s)

i i
-0.2 0 0.2 04 06 08

i
2 0 0.2 04 06

S

_n
Wi
|
O v
N

-
o
)
-

Figure B.16: Average of non-target trials per cluster for Subject 4 processed with
mcBF2 and clustered using k = 6.
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